\begin{tabbing} EOrderAxioms\=\{i:l\}\+ \\[0ex]($E$; ${\it pred?}$; ${\it info}$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=($\forall$$e$:$E$, $l$:IdLnk.\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex]($\forall$${\it e''}$:$E$. \\[0ex]($\uparrow$rcv?(${\it info}$;${\it e''}$)) \\[0ex]$\Rightarrow$ (sender(${\it info}$;${\it e''}$) = $e$ $\in$ $E$) \\[0ex]$\Rightarrow$ (link(${\it info}$;${\it e''}$) = $l$ $\in$ IdLnk) \\[0ex]$\Rightarrow$ \=(((${\it e''}$ = ${\it e'}$ $\in$ $E$) $\vee$ cless($E$;${\it pred?}$;${\it info}$;${\it e''}$;${\it e'}$))\+ \\[0ex]$\wedge$ (loc(${\it info}$;${\it e'}$) = destination($l$) $\in$ Id)))) \-\-\\[0ex]$\wedge$ \=($\forall$$e$:$E$, ${\it e'}$:$E$.\+ \\[0ex](loc(${\it info}$;$e$) = loc(${\it info}$;${\it e'}$) $\in$ Id) \\[0ex]$\Rightarrow$ (${\it pred?}$($e$) = ${\it pred?}$(${\it e'}$) $\in$ ($E$ + Unit)) \\[0ex]$\Rightarrow$ ($e$ = ${\it e'}$ $\in$ $E$)) \-\\[0ex]$\wedge$ strongwellfounded($E$; $e$,${\it e'}$.pred!($E$;${\it pred?}$;${\it info}$;$e$;${\it e'}$)) \\[0ex]$\wedge$ ($\forall$$e$:$E$. ($\neg$($\uparrow$first(${\it pred?}$;$e$))) $\Rightarrow$ (loc(${\it info}$;pred(${\it pred?}$;$e$)) = loc(${\it info}$;$e$) $\in$ Id)) \\[0ex]$\wedge$ ($\forall$$e$:$E$. ($\uparrow$rcv?(${\it info}$;$e$)) $\Rightarrow$ (loc(${\it info}$;sender(${\it info}$;$e$)) = source(link(${\it info}$;$e$)) $\in$ Id)) \\[0ex]$\wedge$ \=($\forall$$e$:$E$, ${\it e'}$:$E$.\+ \\[0ex]($\uparrow$rcv?(${\it info}$;$e$)) \\[0ex]$\Rightarrow$ ($\uparrow$rcv?(${\it info}$;${\it e'}$)) \\[0ex]$\Rightarrow$ (link(${\it info}$;$e$) = link(${\it info}$;${\it e'}$) $\in$ IdLnk) \\[0ex]$\Rightarrow$ cless($E$;${\it pred?}$;${\it info}$;sender(${\it info}$;$e$);sender(${\it info}$;${\it e'}$)) \\[0ex]$\Rightarrow$ cless($E$;${\it pred?}$;${\it info}$;$e$;${\it e'}$)) \-\- \end{tabbing}